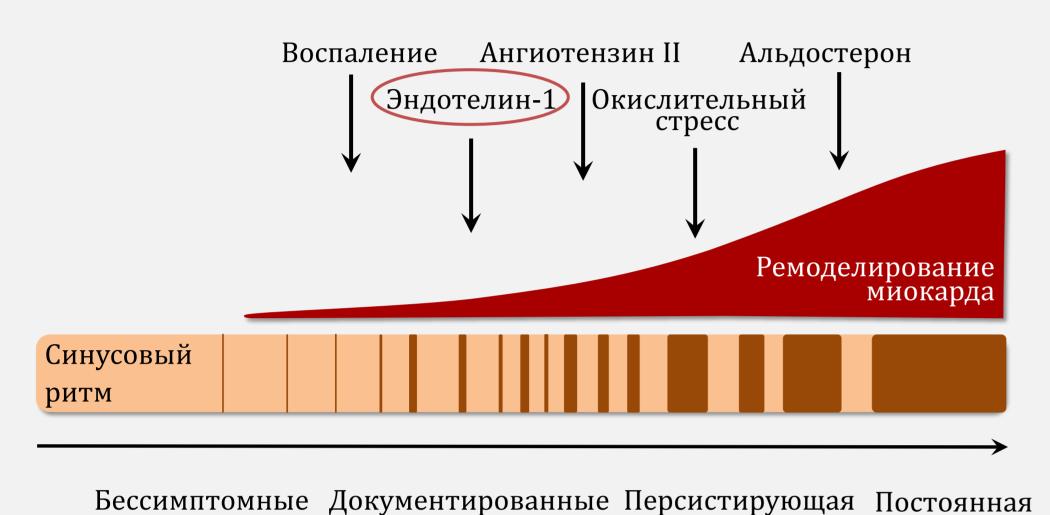
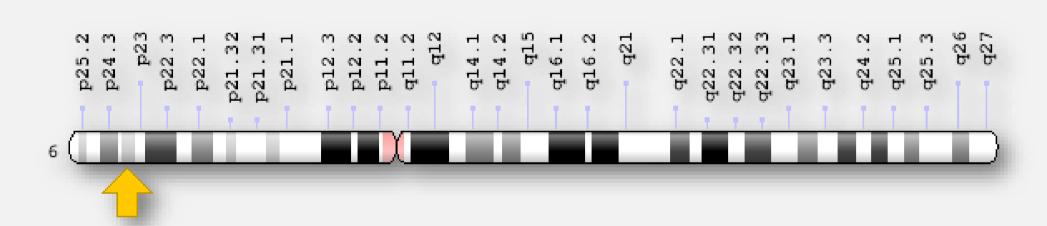
Клинические и эхокардиографические ассоциации полиморфизма Lys198Asn гена эндотелина-1 у пациентов с фибрилляцией предсердий и сердечной недостаточностью с сохраненной фракцией выброса


Дешко М.С., Снежицкий В.А., Дешко Т.А., Горчакова О.В.

УО «Гродненский государственный медицинский университет», Гродно, Беларусь

ФΠ


Введение

Фибрилляция предсердий (ФП) имеет прогрессирующее течение и часто сопровождается развитием ХСН. Среди пациентов с ФП и ХСН значительную часть составляют лица с сохраненной ФВ ЛЖ. Несмотря на нормальную сократительную функцию, у таких пациентов имеет место диастолическая дисфункция миокарда ЛЖ, связанная с гипертрофией кардиомиоцитов, избыточным накоплением коллагена в интерстиции миокарда, нарушением релаксации ЛЖ и повышением давления наполнения. Дисфункция эндотелия на уровне микрососудистого русла миокарда рассматривается как один из главных триггеров вышеперечисленных изменений. Эндотелин-1 является сильным вазоконстриктором и принимает участие в регуляции артериального давления, а наличие у пациента того или иного полиморфного варианта гена эндотелина-1 (EDN1, расположен на хромосоме 6р24.1) может быть связано с риском развития сердечно-сосудистых осложнений.

Рисунок 1. Ремоделирование миокарда и прогрессирование фибрилляции предсердий — роль эндотелина-1 *адаптировано Sanders et al. JACC 2017;70(23):2906-8.*

пароксизмы ФП

Рисунок 2. Цитогенетическое положение гена эндотелина-1 (https://ghr.nlm.nih.gov/gene/EDN1)

Цель

Выявить клинические и эхокардиографические ассоциации полиморфизма Lys198Asn гена эндотелина-1 у пациентов с ФП и XCH с сохраненной ФВ.

Материал и методы

пароксизмы ФП

На рисунке 3 представлены критерии включения и исключения из исследования.

Рисунок 3. Критерии включения и исключения из исследования

Выделяли геномную ДНК из лейкоцитов крови с последующим анализом полиморфизма Lys198Asn гена EDN1 посредством полимеразной цепной реакции с детекцией результатов в режиме реального времени.

Измеряли размеры и объемы камер сердца, диастолическую и систолическую функцию ЛЖ в соответствии с международными рекомендациями. Дополнительно оценивали выраженность фиброза миокарда ЛЖ оценивали посредством акустической денситометрии. Пациентам выполняли эхокардиографическое исследование. Кинопетли, записанные в парастернальной проекции по длинной оси с частотой от 80 до 120 Гц, включали от 5 до 10 сердечных циклов. С помощью модуля анализа областей интереса измеряли обратное рассеяние (IB) в средней части миокарда межжелудочковой перегородки и задней стенки ЛЖ в нескольких зонах размером 5х5 мм. Калиброванное IB (cIB) рассчитывали как разницу IB, полученного для перикарда, представленного преимущественно соединительной тканью, и усредненного значения для миокарда ЛЖ.

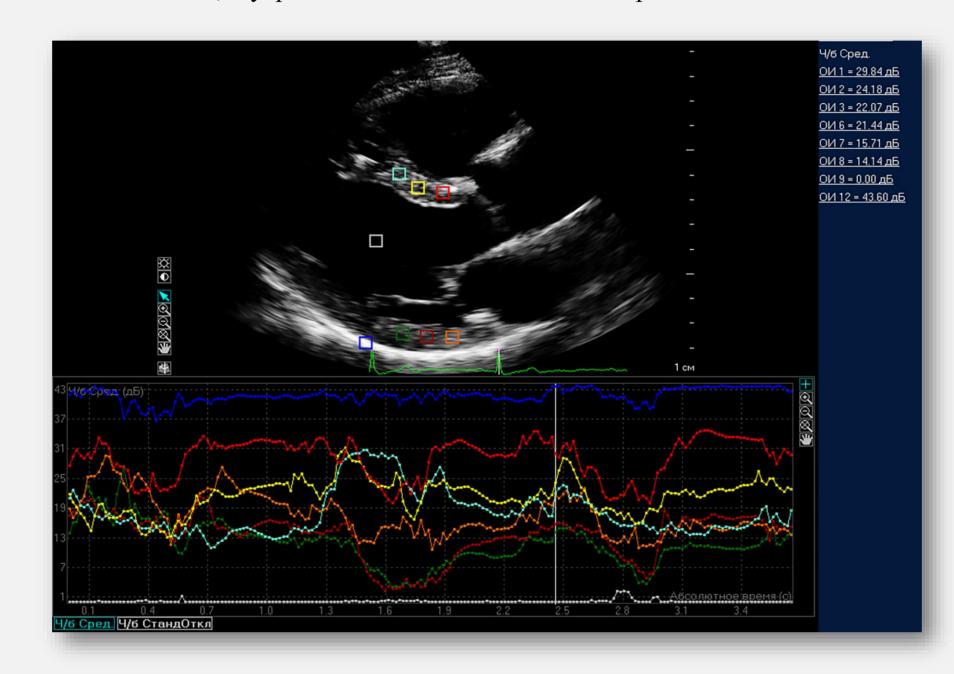


Рисунок 4. Эхокардиографическая оценка фиброза миокарда ЛЖ

Исследование одобрено комитетом по биомедицинской этике и деонтологии ГрГМУ (22.06.2018) и комиссией по врачебной этике и деонтологии ГОККЦ (23.05.2018).

Результаты

Обследованы 274 пациента с неклапанной $\Phi\Pi$ и XCH с сохраненной Φ B, возраст 62 (55-68) лет, 101 (36,9%) женщины. Пароксизмальная форма $\Phi\Pi$ была диагностирована у 150 (55%), персистирующая — 65 (24%), постоянная — 59 (21%) пациентов. Пациенты получали лечение согласно рекомендациям по диагностике и лечению $\Phi\Pi$.

Таблица 1. Характеристика групп пациентов

Параметры	Пароксизмальная ФП (n=150)	Персистирующая ФП (n=65)	Постоянная ФП (n=59)	p*
Возраст, лет	64 (55-69)	59 (53-63)	65 (61-69)	<0,001
Жен. пол, п (%)	67 (45)	14 (22)	21 (35)	<0,01
ΑΓ, n(%)	118 (79)	55 (85)	50 (86)	>0,05
ИБС, n(%)	81 (54)	29 (44)	33 (57)	>0,05
Класс EHRA	2 (1-3)	2 (1-2)	2 (1-2)	>0,05
ФК XCH NYHA	1 (1-2)	2 (1-2)	3 (2-3)	<0,01
ИМТ, кг/м ²	30 (27-33)	30 (27-32)	31 (29-35)	>0,05
CHA ₂ DS ₂ -VASc	3 (2-5)	4 (3-5)	4 (3-6)	<0,01
и АПФ/БРА , n (%)	125 (83)	81 (86)	28 (90)	>0,05
β-блокаторы п (%)	127 (85)	48 (74)	51 (88)	>0,05
Диуретики, п (%)	119 (79)	60 (92)	55 (95)	<0,001
ИММЛЖ, г/м ²	113 (98-135)	115 (103-132)	124 (112-147)	<0,05
КДО, мл	112 (93-131)	124 (111-145)	121 (106-164)	<0,01
КСО, мл	43 (34-55)	53 (43-62)	53 (40-71)	<0,001
ФВ ЛЖ, %	61 (56-66)	58 (54-63)	60 (54-63)	<0,05
TAPSE, MM	23 (21-27)	21 (19-24)	19 (16-22)	<0,001
ЛП, мм	39 (35-44)	42 (39-46)	44 (39-49)	<0,001
$Л\Pi$, мл/м 2	42 (34-51)	53 (44-61)	57 (46-69)	<0,001
E/E'	8.2 (6.5-10.8)	8.1 (7.3-10.2)	9.4 (7.6-11.3)	>0,05

* тесты Краскела-Уоллиса и χ2 Пирсона

По результатам генотипирования пациентов с пароксизмальной $\Phi\Pi$ по полиморфизму Lys198Asn гена EDN1 получены следующие результаты: генотип GG выявлен у 79 (52,7%) пациентов, генотип TT — у 10 (6,7%) пациентов, гетерозигота GT — у 61 (40,7%) пациентов.

У пациентов с персистирующей $\Phi\Pi$ гомозигота GG полиморфизма Lys198Asn гена EDN1 выявлена у 40 (61,5%) пациентов, гетерозигота GT – у 22 (33,9%) пациентов, гомозигота TT - у 3 (4,6%) пациентов.

У пациентов с постоянной формой аритмии распределение генотипов GG, GT и TT составило 25 (42,4%), 33 (55,9%) и 1 (1,7%), соответственно. Пациенты с разными формами ФП не различались между собой по частоте генотипов полиморфного маркера Lys198Asn гена EDN1 (рисунки 5 и 6).

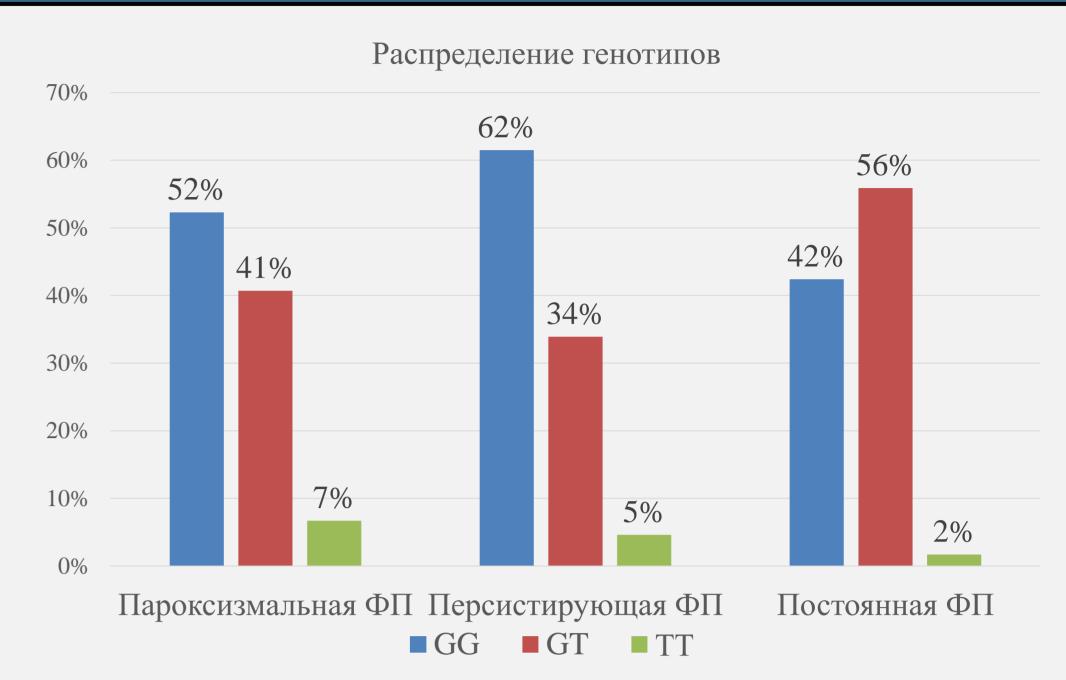
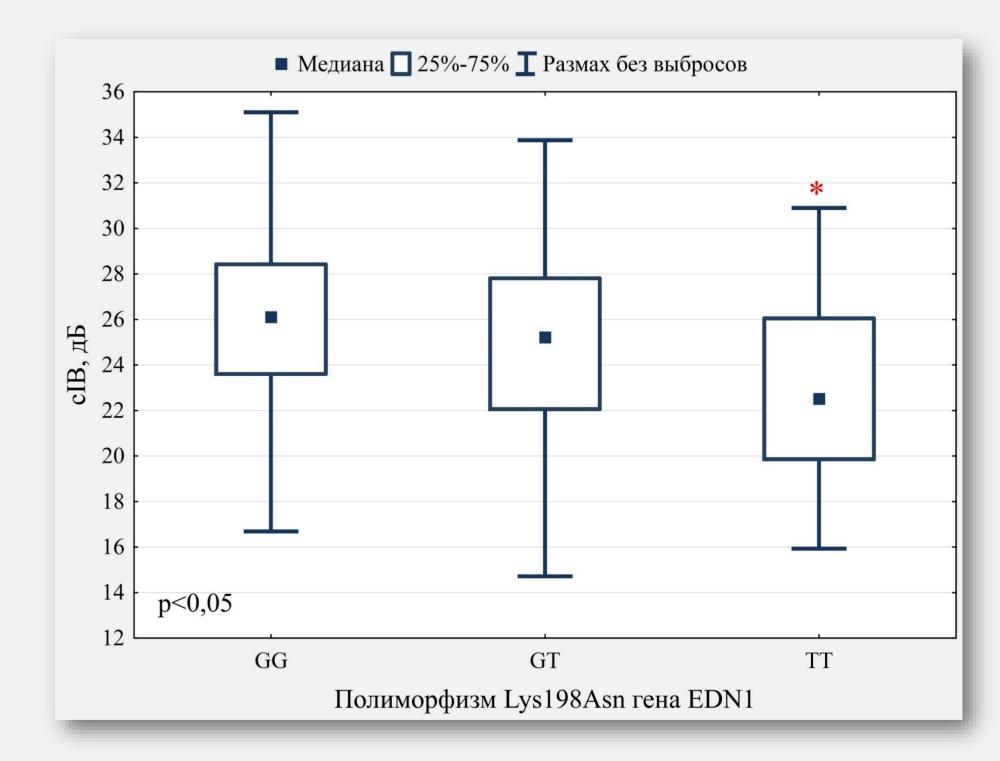



Рисунок 5. Частота генотипов полиморфного маркера Lys198Asn гена EDN1 (рχ2>0,05)

Рисунок 6. Частота аллелей G и T гена EDN1 у пациентов с разными формами ΦΠ (рχ2>0,05)

У пациентов с генотипом GG получили величину cIB 26,1 (23,6-28,4) дБ, с генотипом GT - 25,2 (22,1-27,8) дБ, а в случае генотипа TT - 22,5 (19,9-26,0) дБ (p<0,05, рисунок 7). Различия по выраженности фиброза миокарда ЛЖ между группами, выделенными на основе полиморфизма Lys198Asn гена EDN1, были обусловлены более низким значением cIB у пациентов с вариантом TT по сравнению с пациентами с вариантом GG (p=0,013). Кроме того, имел место тренд и относительно пациентов с вариантом генотипа GT (p=0,05). Величина cIB у пациентов с генотипами GT и GG не различалась.

* p=0,013 U-тест Манна-Уитни с поправкой Бонферрони

Рисунок 4. Величина сIB в группах пациентов с ФП в зависимости от полиморфного варианта гена EDN1

Выводы

Частота аллелей и генотипов полиморфного маркера Lys198Asn гена EDN1 у пациентов с разными формами ФП не различается. Прогрессирование ФП не зависит от полиморфизма гена эндотелина-1.

Величина сIB у пациентов с ФП и XCH с сохраненной ФВ различается у пациентов с разными генотипами полиморфного маркера Lys198Asn гена EDN1 с наиболее выраженным фиброзом миокарда ЛЖ, измеренным при эхокардиографии, у пациентов с генотипом ТТ.

Конфликт интересов

Исследование выполнено при поддержке гранта Белорусского республиканского фонда фундаментальных исследований.